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them using the same radiation properties as were employed 
in correcting the present data. The results of all three in- 
vestigations cover a nine-decade range of the Rayleigh 
number. To accommodate this range, three abscissa ranges, 
each covering three decades, are employed in the figure. 
The solid and long-dashed lines respectively represent the 
correlations of McAdams [ 11 and Mikheyev [4]. 

Examination of the figure indicates that both the present 
data and that of Langmuir generally fall within 10 per cent 
of the McAdams correlation, with a clear tendency for the 
data to lie below the correlating line. Whereas Petavel’s data 
appear to scatter more than the others. it also lies below 
the correlation in the range of GrPr that is common to all 
three sets of data. 

In light of these observations. the McAdams correlation 
appears to be generally adequate for predicting low Rayleigh 
number natural conyection from high temperature wires to 
gases. On the other hand, a better representation may be 
obtained by correlating on the basis of the present data and 
that of Langmuir. Such a correlation is represented by the 
short-dashed lines, the coordinates of which are given in 
Table 1. 

Table I. Coordinates of proposed correlations 

GrPr Nu (Fig. 1) Riu (Fig. 2) 

lOm5 0,463 0.439 
IO 1 0.525 0,499 
IO_ z 0,596 0.565 
IO_ ’ 0.800 0,745 
10” I .07 0.985 
IO’ I.51 1.31 
10Z 2.1 I 1.00 

Except in the range of GrPr between IO-” and IO-*, the 
data appear to favor the McAdams correlation over the 
Mikeyev correlation. 

For natural convection boundary layers, the assumption 
of pressure invariance across the boundary layer leads to 

p = l/T, for a perfect gas. The effect of evaluatmg /j in this 
way will now be examined. For this purpose, the data were 
reduced using the groupings defined by equation (I), with 
all fluid properties evaluated at the film temperature T, but 
with [j equal to l/T,,. 

The thus-evaluated data are shown in Fig. 2, where the 
McAdams correlation is also indicated. The effect of the re- 
evaluation of B is to shift the data to the right relative to 
the McAdams line, thereby widening the gap in the range 
covered by the present data and that of Langmuir. Therefore, 
if it is desired to evaluate [j as l/T,, then the McAdams 
correlation no longer suffices. A proposed correlation of the 
data is indicated by the short-dashed line in Fig. 2. and the 
corresponding coordinates are listed in Table I. 
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NOMENCLATURE 

specific heat; 
heat-transfer coefficient; 
latent heat of vaporization; 
thermal conductivity; 

f, time; 

T, temperature; 

Y, thermal diffusivity; 

6, condensate (liquid) layer thickness; 

n, defined by equation (3) or (5); 

P. liquid density. 

*Present address: Western Electric Co.. Northern Illinois 
Subscripts 

Works, Lisle, Illinois. U.S.A. 1, liquid; 
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s, 
sat, 

w, 

solid; 
saturated vapor; 
wall. 

ROHSENOW in the recent handbook edited by Rohsenow 
and Hartnett [l] considers two examples of transient con- 
densation in which there is no flow of condensate; namely, 
the bottom of a container and zero gravity. Gebhart also 
considered this same problem [2]. Rohsenow and Gebhart 
solve the example of condensation on the bottom of a 
container, with the surface maintained at T, < T,,, by 
neglecting the heat capacity of the liquid layer. They, there- 
fore, assume that the temperature distribution is linear in 
theliquid layer. Their approximate solution for the transient 
liquid layer thickness, 

(1) 

is identical to the solution attributed to Stefan for the solid 
layer thickness in the freezing problem {equation (21) of [3]}. 

It is the purpose of this note to point out that an exact 
solution exists to this problem. The solution is Neumann’s 
classical solution to the Stefan or freezing problem [3], 
specialized to the case in which the freezing liquid is initially 
at its melting temperature. The solution is 

6 = 2,qcqtpz, (2) 

where I, is the root of the transcendental equation 

Ie”‘erfl = 
c&L, - L) 

h,,K”* 
(3) 

The previous approximate solution is the asymptotic solu- 
tion for hf,/(c,(T,., - T,)) + co. 

It can be shown that the heat-transfer coefficient for this 
problem is 

h= 
kl 

erf i(na,t)“2 (4) 

Thus, at t = 0 the heat-transfer coefficient is singular and 
strongly time dependent. 

Other exact solutions which can be applied to condensa- 
tion problems are available in Carslaw and Jaeger. One 
solution is for transient condensation on a semi-infinite 
container-bottom initially at temperature T, < T,,,. The 
solution considers transient conduction in the container- 
bottom. For this problem. equation (2) again gives the liquid 
layer thickness; the transcendental equation for i. becomes 

It is thus apparent that many solutions to change of phase 
problems which have been used to model solid-liquid 
melting-freezing problems can be used to model liquid- 
vapor condensation-evaporation problems provided there 
is no motion in the liquid phase. Sources of solutions include 
Carslaw and Jaeger, and Goodman’s review article on 
approximate integral solutions [4]. 
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